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The initial chracteristics of a plane wave being generated during massive body 
entrance into a suspension are determined. The pressures occurring in the 
wave are sufficient for formation of hydration products imparting binding 
properties to a water-ceramic suspension. 

A compression wave that is propagated deep into a fluid from its free surface and later 
results in the development of a nonlinear acoustic wave occurs during shock entrance of 
a body in a fluid at velocities considerably smaller than the speed of sound. However, 
even before the body succeeds in being retarded substantially, pressures occur in the wave 
that are significantly higher than in ordinary sonic waves. At this stage it is perfectly 
natural to neglect compressibility of the fluid. But known shock problems of the hydrodynam- 
ics of an incompressible fluid permit describing just the total pressure pulse received 
by the fluid and this is not the pressure itself [i]. Consequently, the compressibility 
at the earliest stage of wave generation must already be taken into account to obtain more 
detailed information about the dynamics of the pressure change and about the maximal values 
it attained. 

Besides the possible applications to a number of nonlinear acoustics problems, the 
problem of creating high pressures on the boundaries of interphasal interface is of interest 
in connection with working out and optimizing the technology of preparing water-ceramic 
suspensions with binder properties used in annealing-free production processes for ceramic 
articles [2]. It is established empirically that after mechanical treatment of such suspen- 
sions in even relatively weakly energy-stressed tumbling barrels, they acquire the capacity 
to be shaped without insertion of special binding admixtures, which is of exceptional impor- 
tance for modern technologies, that are quite responsive to purity ofmaterials. The physi- 
cochemical mechanisms for the appearance of intrinsic binders in a suspension during its 
mechanical chemical activation were studied and consist in the accumulation therein of water 
dissociation products and in the origination of appropriate hydrate coatings on particles 
stimulating the polycondensation process that indeed results in the formation of strong 
structural bonds during dehydration. However, high stresses at the particle surfaces close 
to the breaking point (106-10 ? Pa) present at time intervals greatly exceeding the period 
of molecular vibrations (~10 -12 sec) are necessary for the realization of such a process. 
The loadings occurring during the motion of grinding bodies at a velocity of around I m/sec 
in the bulk of a suspension, are approximately 103 Pa, i.e., several tens of orders smaller 
than that needed. Consequently, they cannot be considered as a factor explaining the sus- 
pensions acquiring binding properties. 

Higher stresses can be produced under the impacts of grinding surfaces on the free 
surface of a suspension. A strongly reduced estimate of their magnitude can be obtained 
by referring the pressure pulse following from the solution of the appropriate shock problem 
for an incompressible fluid to the characteristic time interval. However, as is shown in 
[3], such a rough estimate is already sufficient for the deduction that the necessary pres- 
sures can be produced in quite thin films on surfaces of individual particles under the 
impact of a massive body. In this case the formation of hydration products is possible 
only in a very limited number of particles that are directly on the free surface of the 
suspension at the time of impact. Consequently, refinement of the results [3] and determina- 
tion of the maximal pressure values over the whole near-surface layer of the suspension 

is of interest. 

Let us consider the motion stimulated during the impact of a flat body on the free 
surface of a finely-dispersed suspension of hard particles in a weakly-compressible fluid. , 
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For simplicity, we limit ourselves to analyzing the one-dimensional problem at the time 
directly after impact, when the suspended particles have still not succeeded in being accel- 
erated, when the suspended particles still do not succeed in being accelerated because of 
interphasal interaction while the inertial forces significantly exceed all the rest. Then 
the velocity of the dispersed phase can be considered equal to zero while its bulk content 
is unchanged. Moreover, it is allowable to neglect the Stokes viscous interaction force 
as compared with the forces related to deceleration of the apparent fluid masses by the 
particles and to the Bass effect and also by expecting high maximal values of the pressure, 
not to take account of the ordinary dynamic pressure of the order of pV02 

The mass and momentum conservation equations of the continuous phase of the suspension 
are written under tile mentioned assumptions in the form 
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The extension of higher concentrations to the suspension is possible if an experimentally 
found dependence of the relative viscosity of the suspension on its bulk concentration l-g 
is used as M(E) in the first two formulas in (2). 

Keeping in mind the model purposes, we approximate the dependence 9(p) by a linear func- 
tion such that 

09 ~. K Op K -  1 
Ot Ot c 2 ( 3 )  

where c is some effective velocity that agrees with the speed of sound in a pure fluid for 
not too high p and because of the smallness of the adiabatic compressibility factor K we 
set 9 equal to a constant in (i) and (2). This quantity certainly does not have a rela- 
tion to the speed of sound in the suspension. 

The equation governing the change in velocity of the impacting body follows from Newton's 
second law 

mdV/dt  = - -  (P[x=o - -  Po). ( 4 )  

The boundary and initial conditions imposed on the solution of the written equations have 
the form 

V : 0 ,  p : p o  for t = OandX---~oo, 

(5) 
o=V for x = O ,  V=Vo for t=0. 

Since the problem in the approximation under consideration is linearized successfully, 
it is natural to use the Laplace transform (with transformation parameter s). Taking (3) 
into account there follows from (i) and (4) 

c -~ (sp - -  Po) = --pdv/dx,  [~ -J- (1 - -  8) A] psv = ~ d p / d x  --Bp-V-~sv, 

m ( s V - - V o )  : - - P ] ~ = o + P o / S  

(we retain the same :symbols for the transforms of the desired functions as for the originals). 
Eliminating p here we obtain 

dx~d~v ~v,  ~ = = + ~ \ ~ J ] __.c ~ , (6)  
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where 

P - p ~  pc____~__ 2 __dr V -  Vo _+ ps d r )  
s s d x  s m s  ~ d x  x=o 

the concentration functions have been introduced 

= ~ -[- (1 - -  e) A,  ~ = (9/2)(1 - - @ [ ~ M ( e ) ]  ' /2.  

The solution of the equations for v under the conditions v = u for x = 0, v ~ 0 as 
x + =, that follow from (5) result in the formulas 

(7) 

v = Vo _ _  e-~X, P = P___~o + pc2Vo ~, e-~=. ( 8 )  
s (1 + pcZ)~/ms z) s s 2 (1 + pcZ)~/tns 2) 

when the expression for V in (6) is taken into account. 

The asymptotics of the expressions for v and p that correspond to small times after 
impact are obtained from (8) for large s. Taking account of the definition of ~ in (6), 

we obtain for t -I ~ s >> (8/a)2D/pa 2 

s s c , ~ - - 1 +  , ( 9 )  

where the amplitude value of the pressure has been introduced 

p,.  = V'~pcVo = ~PuVo, u = c l V ~ ,  ( 1 0 )  

If components proportional to ~ are generally neglected, then the original of the trans- 

form (9) is an undamped wave 

P ~ Po ~ Pm~l (t - -  x / u ) ,  ( i i ) 

p r o p a g a t e d  d e e p  i n t o  t h e  f l u i d  a t  a v e l o c i t y  u somewha t  l e s s  t h a n  t h e  s p e e d  o f  s o u n d  i n  
the homogeneous liquid phase. 

To find the correction taking account of the damping of this pressure wave we use the 

theorem of lag of operational calculus 

f ( t - -  ( t - -  + e-' f (s), f (t) + f (s) 

and the tabulated correspondences between the transforms and the originals [5]. In the 

case under consideration 

f (s) = P--~-~ 1 ~ ~• exp ] / ~  
s 2cc "Y7 2"V  ' 

where 

f (t) = Pm eric -5 
4a/  

C o n s e q u e n t l y ,  k e e p i n g  o n l y  t h e  p r i n c i p a l  t e r m  i n  ( 9 )  f o r  t h e  p r e s s u r e  t r a n s f o r m ,  we o b t a i n  

P - -  Po ~ P,~ erfc [ 4 "V~ t - -  u n t - -  , ( 1 2 )  

which is approximately valid upon satisfaction of the inequalities 

4~ s/2 paZ c. a~z pa___~ z x<<--~ (13) 

I t  i s  e a s y  t o  w r i t e  down a n a l o g o u s  a p p r o x i m a t e  r e p r e s e n t a t i o n s  f o r  t h e  v e l o c i t i e s  v 

and  V a l s o .  Thus  

162 
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Let us confirm the validity of the approximations utilized in the analysis. Neglecting 
the operator v3/Sx as compared with 8/3t is adequate for XV 0 ~ s with X from (6), which 
is equivalent to the requirement of smallness of the body velocity as compared with the 
speed of sound when (13) is satisfied. Neglecting the Stokes viscous force as compared 
with the remaining components of the interphasal interaction is perfectly justified upon 
satisfaction of the first inequality in (13) that actually asserts the smallness of the 
Bass force as compared with the inertial force associated with deceleration of the apparent 
masses. This inequality requires t ~ 10 -4 sec for aqueous suspensions of particles of 
radius ~10 -5 m. Not taking the deceleration of the impacting body into account is possible, 
as follows from (4) and (i0), for t ~ mV0/Pm~ m/pc, which is a weaker constraint than that 
following from (13) under real conditions. Using the mechanics of the suspension to describe 
the process of the continual equations (i) is allowable in case the characteristic linear 
scale of the process is much greater than the particle radius. If a quantity 102 times 
smaller than the right side of the second inequality in (13) is even taken as such a scale, 
we arrive at the requirement 10 -2 pac/~ ~ 1 which is satisfied with very good accuracy 
for aqueous suspensions (p/~ ~ 106 sec/m 2, c ~ 103 m/sec) of particles with a ~10-e-10 -s m. 
Neglecting the involvement of particles in the motion of the wave being propagated, which 
generally requires smallness of the fluid density as compared with the density of the particle 
material turns out to be the most limiting. However, it is also allowable for obtaining 
ordinal estimates, as is the main purpose of this paper. 

The pressure profiles in the wave described by (12) are shown in Fig. i. If c is under- 
stood to be the speed of sound in water equal to approximately 1430 m/sec, then pcV 0 = 1.43"106 

Pa. The dependence of the ratio pm/pcV0 = ~ on the bulk concentration of the suspension 
is shown in Fig. 2. It is seen that the presence of the interphasal interaction force that 
hinders free fluid flow results in a certain increase in the amplitude value of the pressure. 

Let us estimate the local stresses directly at the suspended particle surfaces. The 
force acting on one particle is obtained upon dividing the interphasal interaction force 
in (i) by the numerical particle concentration n = 3(1 - E)/4~a a. The stress o on the parti- 
cle surface equals, in order of magnitude, this force divided by the middle section area 
~a 2. On the basis of (i) and (8) we obtain for the transform of this quantity in the previous 
approximation 

~ ~ --~- A + B apVo exp c 1 + ---~- \--~-~ 7 , 

from which the expression for the original follows, t > x/u, 

4apVoc~• I A/o~ x ] [ [32• ( + )  ] ~ 1 -{- exp -- - t-- ,1 (15) 
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Fig. 1 Fig. 2 

Fig. i. Relative pressure profiles in a wave at different times for an 
aqueous suspension with E = 0.8, a = 10 -5 m for V 0 = 1 m/sec: 1-4) 106 
t = i, 2, 3, 4 sec. 102 x, m. 

Fig. 2. Dependence of the relative maximal pressure on the suspension 
concentration. 
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F i g .  3. S t r e s s  p r o f i l e s  on p a r t i c l e  s u r f a c e s  f o r  t h e  same p a r a m e t e r s  
as for Fig. i: 1-3) 106 t =0.5, i, 2 sec. 10 -7 o, Pa. 

The dependences of o on t and x are represented (see Fig. 3) for the same conditions 
as the curves in Fig. i. 

The stress (15) depends quite strongly on the suspension concentration which vanishes 
when going over to dilute suspensions. This is related to the fact that the force acting 
on a particle in the wave is determined by the magnitude of not the pressure itself but 
of its gradient. As can be seen from (12) this latter is close to zero in dilute suspensions 
(6 ~ 0). This corresponds to replacement of the damped pressure wave (12) by the undamped 
wave (Ii). Let us note that damping within the framework of the proposed model is due entire- 
ly to the action of the Bass force but not the Stokes force and not the viscous stresses 
in the continuous phase of the suspension. 

As follows from (12) and (15) as well as from Figs. i and 3, pressures and stresses 
are actually developed on the particle surfaces in the suspensions that achieve several 
MPa and act for time intervals on the order of 10 -6 sac or more. Under practical conditions 
this is completely sufficient for the realization of hydration processes on particles [2, 
3] in an extended near-surface layer and not only in thin films enveloping the particles 
on the free surface. The thickness of this layer 6 is of the order of I0 -s m (see Fig. 
3) and the quantity of particles contained therein in a computation on a free surface area 
S is n~S. This number is approximately 4.8"106 for the suspension displayed in Fig. 3 and 
for S = i cm 2 = i0 -~ m 2. 

In conclusion, let us emphasize that the model developed above for involving the fluid 
in motion for an impact on its free surface is certainly not valid if the velocity of the 
impacting body is of the order of the speed of sound in the fluid (when a shock is developed 
and the convective parts of the total time derivatives are substantial) or exceed it signifi- 
cantly (when the compressibility ceases to play any role and the model proposed in [6] is 
apparently adequate). 

Notation. a is the particle radius; A, B are coefficients defined in (2); c is the 
effective speed of sound; K is the adiabatic compressibility factor; m is the mass of the 
impacting body in a computation per unit free surface area; M(e) is a function defined in 
(2); p, P0 are the pressure and its initial value; Pm is the amplitude value of the pressure 
wave defined in (i0); s is the Laplace transform parameter; t is the time; u is the wave 
velocity; v is the fluid velocity; V, V 0 are the body velocity and its initial value; x 
is a coordinate with origin on the free surface; ~, 8 are functions introduced in (7); 
is the suspension porosity; N(t) is the Heaviside stepfunction; < - (~/pa2c2)i/2; k is the 
exponent in (6); D, p are the fluid viscosity and density; o is the characteristic stress 
on the particle surface. 
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MASS-TRANSFER MECHANISM IN A VIBRATIONALLY FLUIDIZED CHEMICAL 

REACTION DISPERSION 

A. F. Ryzhkov, I. E. Kipnis, and A. P. Baskakov UDC 66.096.5 

An elementary analysis is applied to the mass transport mechanism in a solid- 
state chemical process occurring in a vibrating finely divided mixture. The 
analysis is confirmed by experiment. 

It is usual to conduct a solid-state process involving high-temperature chemical or 
physicochemical transformations in a material ground to a size level of 0.i-i0 ~m by means 
of alternating heating and grinding stages until a single-phase product is obtained. A 
vibrofluidized bed enables one to combine these stages [i], a key aspect being overcoming 
sintering, where the solution enables one to optimize the outer interactions. 

i. Autohesion Particle Interaction in a High-Temperature Fluidized Bed. The charge 
usually belongs to group C in Geldart's classification (aspheric particles less than 20-30 
~m not fluidized by gas), which coalesce into primary formations under molecular forces. 
In a stationary bed of chemically inert particles, one gets branched chain structures, which 
serve to maintain the porosity of ~ ~ 0.85-0.95 in a stable state. When the bed is vibrated, 
the chains are broken and the extreme particles come together to form denser aggregates, 
whose size in the vibrational-force field may be described by [2] 

O 
D= 

p ( I - - ~ ) ( 1  q-KOg (1 )  

Tha t  s i t u a t i o n  o c c u r s  f o r  r e l a t i v e  s m a l l  o t h e r  e x t e r n a l  f o r c e s ,  i n c l u d i n g  h y d r o d y n a m i c  o n e s ,  
e . g . ,  i n  t h e  v i b r a t i o n a l  t r e a t m e n t  o f  powders  in  t h e  m o b i l e *  s t a t e  o r  u n d e r  low vacuum 
(P0 ~ 104 P a ) ,  when t h e  g a s  p r e s s u r e  p u l s a t i o n s  a r e  a t  a l e v e l  d o s e  t o  P ~ 1 kPa [ 4 ] .  

Hydrodynamic  f o r c e s  h a v e  more e f f e c t  on t h e  s i z e ,  a s  t h e y  o c c u r  d u r i n g  v i b r a t i o n  and 
a r e  e x t e r n a l  in  r e l a t i o n  t o  t h e  bed .  The m i c r o p o r o u s  body h a s  an u n s y m m e t r i c a l  f o r c e  c h a r -  
a c t e r i s t i c ,  and an a g g r e g a t e  h a s  a h i g h  h y d r o d y n a m i c  r e s i s t a n c e  and e f f e c t i v e l y  damps t h e  
e x t e r n a l  g a s - p r e s s u r e  p u l s a t i o n s .  A p o s i t i v e  p u l s a t i o n  c o m p r e s s e s  t h e  body  s l i g h t l y .  A 
n e g a t i v e  p u l s a t i o n  g e n e r a t e s  t e n s i l e  f o r c e s ,  wh ich  l e a d  t o  b r e a k u p  i f  t h e  t e n s i l e  s t r e n g t h  
i s  e x c e e d e d .  The p r e s s u r e - p e r t u r b a t i o n  p e n e t r a t i o n  d e p t h  i s  g i v e n  by  [ 5 ] ,  wh ich  in  ou r  
s y m b o l s  i s  

H e = V a~Tj~/ .  (2) 

The t h e o r y  shows t h a t  t h e  g a s  p r e s s u r e  a m p l i t u d e  in  t h a t  r a n g e  i s  r e d u c e d  by  a f a c t o r  e 
i n  t h e  p o r e s .  Very  h i g h  t e n s i l e  f o r c e s  d e v e l o p  a l o n g  t h e  c h a n n e l s ,  w i t h  t h e  maximum o c c u r -  
r i n g  in  t h e  s u r f a c e s  o f  t h e  a g g r e g a t e s .  One l i n e a r i z e s  t h e  p r e s s u r e  d i s t r i b u t i o n  t o  d e t e r -  
mine  t h e  e q u i l i b r i u m  d i a m e t e r  o f  t h e  p a r t i c l e  a g g r e g a t e s  d e t a c h e d  f rom t h e  i n i t i a l  body 
by t h o s e  f o r c e s  f rom t h e  p r o p o r t i o n  

*Classification of vibrational fluidization mode from [3]. 
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